千锋教育-做有情怀、有良心、有品质的职业教育机构

400-811-9990
手机站
千锋教育

千锋学习站 | 随时随地免费学

千锋教育

扫一扫进入千锋手机站

领取全套视频
千锋教育

关注千锋学习站小程序
随时随地免费学习课程

上海
  • 北京
  • 郑州
  • 武汉
  • 成都
  • 西安
  • 沈阳
  • 广州
  • 南京
  • 深圳
  • 大连
  • 青岛
  • 杭州
  • 重庆
当前位置:郑州千锋IT培训  >  技术干货  >  分布式系统里用户ID生成有什么好的方法和规则能满足“少数、尽量短、不能直接看出规则”这几个条件?

分布式系统里用户ID生成有什么好的方法和规则能满足“少数、尽量短、不能直接看出规则”这几个条件?

来源:千锋教育
发布人:xqq
时间: 2023-10-20 20:28:01

1、基于UUID

在Java的世界里,想要得到一个具有少数性的ID,首先被想到可能就是UUID,毕竟它有着全球少数的特性。那么UUID可以做分布式ID吗?答案是可以的,但是并不是十分推荐。

public static void main(String[] args) {        String uuid = UUID.randomUUID().toString().replaceAll("-","");       System.out.println(uuid); }

UUID的生成简单到只有一行代码,输出结果 c2b8c2b9e46c47e3b30dca3b0d447718,但UUID却并不适用于实际的业务需求。像用作订单号UUID这样的字符串没有丝毫的意义,看不出和订单相关的有用信息;而对于数据库来说用作业务主键ID,它不仅是太长还是字符串,存储性能差查询也很耗时,所以不推荐用作分布式ID。

优点:生成足够简单,本地生成无网络消耗,具有少数性。

缺点:

无序的字符串,不具备趋势自增特性;没有具体的业务含义;长度过长16 字节128位,36位长度的字符串,存储以及查询对MySQL的性能消耗较大,MySQL官方明确建议主键要尽量越短越好,作为数据库主键 UUID 的无序性会导致数据位置频繁变动,严重影响性能。

2、基于数据库自增ID

基于数据库的auto_increment自增ID完全可以充当分布式ID,具体实现:需要一个单独的MySQL实例用来生成ID,建表结构如下:

当我们需要一个ID的时候,向表中插入一条记录返回主键ID,但这种方式有一个比较致命的缺点,访问量激增时MySQL本身就是系统的瓶颈,用它来实现分布式服务风险比较大。

优点:实现简单,ID单调自增,数值类型查询速度快

缺点:DB单点存在宕机风险,无法扛住高并发场景

3、基于数据库集群模式

前边说了单点数据库方式不可取,那对上边的方式做一些高可用优化,换成主从模式集群。害怕一个主节点挂掉没法用,那就做双主模式集群,也就是两个Mysql实例都能单独的生产自增ID。那这样还会有个问题,两个MySQL实例的自增ID都从1开始,会生成重复的ID怎么办?

解决方案:设置起始值和自增步长。

MySQL_1 配置:

MySQL_2 配置:

这样两个MySQL实例的自增ID分别就是:

1、3、5、7、92、4、6、8、10

那如果集群后的性能还是扛不住高并发咋办?就要进行MySQL扩容增加节点,这是一个比较麻烦的事。

从上图可以看出,水平扩展的数据库集群,有利于解决数据库单点压力的问题,同时为了ID生成特性,将自增步长按照机器数量来设置。增加第三台MySQL实例需要人工修改一、二两台MySQL实例的起始值和步长,把第三台机器的ID起始生成位置设定在比现有最大自增ID的位置远一些,但必须在一、二两台MySQL实例ID还没有增长到第三台MySQL实例的起始ID值的时候,否则自增ID就要出现重复了,必要时可能还需要停机修改。

优点:解决DB单点问题。

缺点:不利于后续扩容,而且实际上单个数据库自身压力还是大,依旧无法满足高并发场景。

4、基于数据库的号段模式

号段模式是当下分布式ID生成器的主流实现方式之一,号段模式可以理解为从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,具体的业务服务将本号段,生成1~1000的自增ID并加载到内存。表结构如下:

CREATE TABLE id_generator (  id int(10) NOT NULL,  max_id bigint(20) NOT NULL COMMENT '当前最大id',  step int(20) NOT NULL COMMENT '号段的布长',  biz_type    int(20) NOT NULL COMMENT '业务类型',  version int(20) NOT NULL COMMENT '版本号',  PRIMARY KEY (id)) 
biz_type :代表不同业务类型max_id :当前最大的可用idstep :代表号段的长度version :是一个乐观锁,每次都更新version,保证并发时数据的正确性

等这批号段ID用完,再次向数据库申请新号段,对max_id字段做一次update操作,update max_id= max_id + step,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]。

update id_generator set max_id = #{max_id+step}, version = version + 1 where version = # {version} and biz_type = XXX

由于多业务端可能同时操作,所以采用版本号version乐观锁方式更新,这种分布式ID生成方式不强依赖于数据库,不会频繁的访问数据库,对数据库的压力小很多。

5、基于Redis模式

Redis也同样可以实现,原理就是利用redis的 incr命令实现ID的原子性自增:

用redis实现需要注意一点,要考虑到redis持久化的问题。redis有两种持久化方式RDB和AOF:

RDB会定时打一个快照进行持久化,假如连续自增但redis没及时持久化,而这会Redis挂掉了,重启Redis后会出现ID重复的情况。AOF会对每条写命令进行持久化,即使Redis挂掉了也不会出现ID重复的情况,但由于incr命令的特殊性,会导致Redis重启恢复的数据时间过长。

6、基于雪花算法(Snowflake)模式

雪花算法(Snowflake)是twitter公司内部分布式项目采用的ID生成算法,开源后广受国内大厂的好评,在该算法影响下各大公司相继开发出各具特色的分布式生成器。

Snowflake生成的是Long类型的ID,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特。Snowflake ID组成结构:正数位(占1比特)+ 时间戳(占41比特)+ 机器ID(占5比特)+ 数据中心(占5比特)+ 自增值(占12比特),总共64比特组成的一个Long类型。

名列前茅个bit位(1bit):Java中long的较高位是符号位代表正负,正数是0,负数是1,一般生成ID都为正数,所以默认为0。时间戳部分(41bit):毫秒级的时间,不建议存当前时间戳,而是用(当前时间戳 – 固定开始时间戳)的差值,可以使产生的ID从更小的值开始;41位的时间戳可以使用69年,(1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69年工作机器id(10bit):也被叫做workId,这个可以灵活配置,机房或者机器号组合都可以。序列号部分(12bit):自增值支持同一毫秒内同一个节点可以生成4096个ID

根据这个算法的逻辑,只需要将这个算法用Java语言实现出来,封装为一个工具方法,那么各个业务应用可以直接使用该工具方法来获取分布式ID,只需保证每个业务应用有自己的工作机器id即可,而不需要单独去搭建一个获取分布式ID的应用。Java版本的****Snowflake算法实现:

public class SnowFlakeShortUrl {    private final static long START_TIMESTAMP = 1480166465631L;    private final static long SEQUENCE_BIT = 12;   //序列号占用的位数    private final static long MACHINE_BIT = 5;     //机器标识占用的位数    private final static long DATA_CENTER_BIT = 5; //数据中心占用的位数    private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);    private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);    private final static long MAX_DATA_CENTER_NUM = -1L ^ (-1L << DATA_CENTER_BIT);    private final static long MACHINE_LEFT = SEQUENCE_BIT;    private final static long DATA_CENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;    private final static long TIMESTAMP_LEFT = DATA_CENTER_LEFT + DATA_CENTER_BIT;    private long dataCenterId;  //数据中心    private long machineId;     //机器标识    private long sequence = 0L; //序列号    private long lastTimeStamp = -1L;  //上一次时间戳    private long getNextMill() {        long mill = getNewTimeStamp();        while (mill <= lastTimeStamp) {            mill = getNewTimeStamp();        }        return mill;}    private long getNewTimeStamp() {        return System.currentTimeMillis();    }    public SnowFlakeShortUrl(long dataCenterId, long machineId) {        if (dataCenterId > MAX_DATA_CENTER_NUM || dataCenterId < 0) {            throw new IllegalArgumentException("DtaCenterId can't be greater than MAX_DATA_CENTER_NUM or less than 0!");        }        if (machineId > MAX_MACHINE_NUM || machineId < 0) {            throw new IllegalArgumentException("MachineId can't be greater than MAX_MACHINE_NUM or less than 0!");        }        this.dataCenterId = dataCenterId;        this.machineId = machineId;    }  public synchronized long nextId() {        long currTimeStamp = getNewTimeStamp();        if (currTimeStamp < lastTimeStamp) {            throw new RuntimeException("Clock moved backwards.  Refusing to generate id");        }        if (currTimeStamp == lastTimeStamp) {            //相同毫秒内,序列号自增            sequence = (sequence + 1) & MAX_SEQUENCE;            //同一毫秒的序列数已经达到最大            if (sequence == 0L) {                currTimeStamp = getNextMill();            }        } else {            //不同毫秒内,序列号置为0            sequence = 0L;        }        lastTimeStamp = currTimeStamp;        return (currTimeStamp - START_TIMESTAMP) << TIMESTAMP_LEFT //时间戳部分                | dataCenterId << DATA_CENTER_LEFT       //数据中心部分                | machineId << MACHINE_LEFT             //机器标识部分                | sequence;                             //序列号部分    }    public static void main(String[] args) {        SnowFlakeShortUrl snowFlake = new SnowFlakeShortUrl(2, 3);        for (int i = 0; i < (1 << 4); i++) {            System.out.println(snowFlake.nextId());        }    }}

7、百度(uid-generator)

uid-generator是由百度技术部开发,项目GitHub地址为https://github.com/baidu/uid-generator。uid-generator是基于Snowflake算法实现的,与原始的snowflake算法不同在于,uid-generator支持自定义时间戳、工作机器ID和 序列号 等各部分的位数,而且uid-generator中采用用户自定义workId的生成策略。

uid-generator需要与数据库配合使用,需要新增一个WORKER_NODE表。当应用启动时会向数据库表中去插入一条数据,插入成功后返回的自增ID就是该机器的workId数据由host,port组成。对于****uid-generator ID组成结构:workId,占用了22个bit位,时间占用了28个bit位,序列化占用了13个bit位,需要注意的是,和原始的snowflake不太一样,时间的单位是秒,而不是毫秒,workId也不一样,而且同一应用每次重启就会消费一个workId。

延伸阅读1:分布式ID的特点

少数性:生成的ID全局少数,在特定范围内冲突概率极小。有序性:生成的ID按某种规则有序,便于数据库插入及排序。可用性:可保证高并发下的可用性,确保任何时候都能正确的生成ID。自主性:分布式环境下不依赖中心认证即可自行生成ID。安全性:不暴露系统和业务的信息,如:订单数,用户数等。
声明:本站稿件版权均属千锋教育所有,未经许可不得擅自转载。

猜你喜欢LIKE

华为自研的数据库gaussdb有哪些优势?

2023-10-20

为什么使用MySQL?

2023-10-20

什么是synchronized?

2023-10-20

最新文章NEW

一个优异的web前端,需要具备哪些条件?

2023-10-20

数据库ER图是怎么做的?

2023-10-20

isKindOfClass、isMemberOfClass 作用分别是什么?

2023-10-20

相关推荐HOT

更多>>

快速通道 更多>>

最新开班信息 更多>>

网友热搜 更多>>