分布式系统里用户ID生成有什么好的方法和规则能满足“少数、尽量短、不能直接看出规则”这几个条件?
1、基于UUID
在Java的世界里,想要得到一个具有少数性的ID,首先被想到可能就是UUID,毕竟它有着全球少数的特性。那么UUID可以做分布式ID吗?答案是可以的,但是并不是十分推荐。
public static void main(String[] args) { String uuid = UUID.randomUUID().toString().replaceAll("-",""); System.out.println(uuid); }
UUID的生成简单到只有一行代码,输出结果 c2b8c2b9e46c47e3b30dca3b0d447718,但UUID却并不适用于实际的业务需求。像用作订单号UUID这样的字符串没有丝毫的意义,看不出和订单相关的有用信息;而对于数据库来说用作业务主键ID,它不仅是太长还是字符串,存储性能差查询也很耗时,所以不推荐用作分布式ID。
优点:生成足够简单,本地生成无网络消耗,具有少数性。
缺点:
无序的字符串,不具备趋势自增特性;没有具体的业务含义;长度过长16 字节128位,36位长度的字符串,存储以及查询对MySQL的性能消耗较大,MySQL官方明确建议主键要尽量越短越好,作为数据库主键 UUID 的无序性会导致数据位置频繁变动,严重影响性能。2、基于数据库自增ID
基于数据库的auto_increment自增ID完全可以充当分布式ID,具体实现:需要一个单独的MySQL实例用来生成ID,建表结构如下:
当我们需要一个ID的时候,向表中插入一条记录返回主键ID,但这种方式有一个比较致命的缺点,访问量激增时MySQL本身就是系统的瓶颈,用它来实现分布式服务风险比较大。
优点:实现简单,ID单调自增,数值类型查询速度快
缺点:DB单点存在宕机风险,无法扛住高并发场景
3、基于数据库集群模式
前边说了单点数据库方式不可取,那对上边的方式做一些高可用优化,换成主从模式集群。害怕一个主节点挂掉没法用,那就做双主模式集群,也就是两个Mysql实例都能单独的生产自增ID。那这样还会有个问题,两个MySQL实例的自增ID都从1开始,会生成重复的ID怎么办?
解决方案:设置起始值和自增步长。
MySQL_1 配置:
MySQL_2 配置:
这样两个MySQL实例的自增ID分别就是:
1、3、5、7、92、4、6、8、10
那如果集群后的性能还是扛不住高并发咋办?就要进行MySQL扩容增加节点,这是一个比较麻烦的事。
从上图可以看出,水平扩展的数据库集群,有利于解决数据库单点压力的问题,同时为了ID生成特性,将自增步长按照机器数量来设置。增加第三台MySQL实例需要人工修改一、二两台MySQL实例的起始值和步长,把第三台机器的ID起始生成位置设定在比现有最大自增ID的位置远一些,但必须在一、二两台MySQL实例ID还没有增长到第三台MySQL实例的起始ID值的时候,否则自增ID就要出现重复了,必要时可能还需要停机修改。
优点:解决DB单点问题。
缺点:不利于后续扩容,而且实际上单个数据库自身压力还是大,依旧无法满足高并发场景。
4、基于数据库的号段模式
号段模式是当下分布式ID生成器的主流实现方式之一,号段模式可以理解为从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,具体的业务服务将本号段,生成1~1000的自增ID并加载到内存。表结构如下:
CREATE TABLE id_generator ( id int(10) NOT NULL, max_id bigint(20) NOT NULL COMMENT '当前最大id', step int(20) NOT NULL COMMENT '号段的布长', biz_type int(20) NOT NULL COMMENT '业务类型', version int(20) NOT NULL COMMENT '版本号', PRIMARY KEY (id))
biz_type :代表不同业务类型max_id :当前最大的可用idstep :代表号段的长度version :是一个乐观锁,每次都更新version,保证并发时数据的正确性等这批号段ID用完,再次向数据库申请新号段,对max_id字段做一次update操作,update max_id= max_id + step,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]。
update id_generator set max_id = #{max_id+step}, version = version + 1 where version = # {version} and biz_type = XXX
由于多业务端可能同时操作,所以采用版本号version乐观锁方式更新,这种分布式ID生成方式不强依赖于数据库,不会频繁的访问数据库,对数据库的压力小很多。
5、基于Redis模式
Redis也同样可以实现,原理就是利用redis的 incr命令实现ID的原子性自增:
用redis实现需要注意一点,要考虑到redis持久化的问题。redis有两种持久化方式RDB和AOF:
RDB会定时打一个快照进行持久化,假如连续自增但redis没及时持久化,而这会Redis挂掉了,重启Redis后会出现ID重复的情况。AOF会对每条写命令进行持久化,即使Redis挂掉了也不会出现ID重复的情况,但由于incr命令的特殊性,会导致Redis重启恢复的数据时间过长。6、基于雪花算法(Snowflake)模式
雪花算法(Snowflake)是twitter公司内部分布式项目采用的ID生成算法,开源后广受国内大厂的好评,在该算法影响下各大公司相继开发出各具特色的分布式生成器。
Snowflake生成的是Long类型的ID,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特。Snowflake ID组成结构:正数位(占1比特)+ 时间戳(占41比特)+ 机器ID(占5比特)+ 数据中心(占5比特)+ 自增值(占12比特),总共64比特组成的一个Long类型。
名列前茅个bit位(1bit):Java中long的较高位是符号位代表正负,正数是0,负数是1,一般生成ID都为正数,所以默认为0。时间戳部分(41bit):毫秒级的时间,不建议存当前时间戳,而是用(当前时间戳 – 固定开始时间戳)的差值,可以使产生的ID从更小的值开始;41位的时间戳可以使用69年,(1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69年工作机器id(10bit):也被叫做workId,这个可以灵活配置,机房或者机器号组合都可以。序列号部分(12bit):自增值支持同一毫秒内同一个节点可以生成4096个ID根据这个算法的逻辑,只需要将这个算法用Java语言实现出来,封装为一个工具方法,那么各个业务应用可以直接使用该工具方法来获取分布式ID,只需保证每个业务应用有自己的工作机器id即可,而不需要单独去搭建一个获取分布式ID的应用。Java版本的****Snowflake算法实现:
public class SnowFlakeShortUrl { private final static long START_TIMESTAMP = 1480166465631L; private final static long SEQUENCE_BIT = 12; //序列号占用的位数 private final static long MACHINE_BIT = 5; //机器标识占用的位数 private final static long DATA_CENTER_BIT = 5; //数据中心占用的位数 private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT); private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT); private final static long MAX_DATA_CENTER_NUM = -1L ^ (-1L << DATA_CENTER_BIT); private final static long MACHINE_LEFT = SEQUENCE_BIT; private final static long DATA_CENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT; private final static long TIMESTAMP_LEFT = DATA_CENTER_LEFT + DATA_CENTER_BIT; private long dataCenterId; //数据中心 private long machineId; //机器标识 private long sequence = 0L; //序列号 private long lastTimeStamp = -1L; //上一次时间戳 private long getNextMill() { long mill = getNewTimeStamp(); while (mill <= lastTimeStamp) { mill = getNewTimeStamp(); } return mill;} private long getNewTimeStamp() { return System.currentTimeMillis(); } public SnowFlakeShortUrl(long dataCenterId, long machineId) { if (dataCenterId > MAX_DATA_CENTER_NUM || dataCenterId < 0) { throw new IllegalArgumentException("DtaCenterId can't be greater than MAX_DATA_CENTER_NUM or less than 0!"); } if (machineId > MAX_MACHINE_NUM || machineId < 0) { throw new IllegalArgumentException("MachineId can't be greater than MAX_MACHINE_NUM or less than 0!"); } this.dataCenterId = dataCenterId; this.machineId = machineId; } public synchronized long nextId() { long currTimeStamp = getNewTimeStamp(); if (currTimeStamp < lastTimeStamp) { throw new RuntimeException("Clock moved backwards. Refusing to generate id"); } if (currTimeStamp == lastTimeStamp) { //相同毫秒内,序列号自增 sequence = (sequence + 1) & MAX_SEQUENCE; //同一毫秒的序列数已经达到最大 if (sequence == 0L) { currTimeStamp = getNextMill(); } } else { //不同毫秒内,序列号置为0 sequence = 0L; } lastTimeStamp = currTimeStamp; return (currTimeStamp - START_TIMESTAMP) << TIMESTAMP_LEFT //时间戳部分 | dataCenterId << DATA_CENTER_LEFT //数据中心部分 | machineId << MACHINE_LEFT //机器标识部分 | sequence; //序列号部分 } public static void main(String[] args) { SnowFlakeShortUrl snowFlake = new SnowFlakeShortUrl(2, 3); for (int i = 0; i < (1 << 4); i++) { System.out.println(snowFlake.nextId()); } }}
7、百度(uid-generator)
uid-generator是由百度技术部开发,项目GitHub地址为https://github.com/baidu/uid-generator。uid-generator是基于Snowflake算法实现的,与原始的snowflake算法不同在于,uid-generator支持自定义时间戳、工作机器ID和 序列号 等各部分的位数,而且uid-generator中采用用户自定义workId的生成策略。
uid-generator需要与数据库配合使用,需要新增一个WORKER_NODE表。当应用启动时会向数据库表中去插入一条数据,插入成功后返回的自增ID就是该机器的workId数据由host,port组成。对于****uid-generator ID组成结构:workId,占用了22个bit位,时间占用了28个bit位,序列化占用了13个bit位,需要注意的是,和原始的snowflake不太一样,时间的单位是秒,而不是毫秒,workId也不一样,而且同一应用每次重启就会消费一个workId。
延伸阅读1:分布式ID的特点
少数性:生成的ID全局少数,在特定范围内冲突概率极小。有序性:生成的ID按某种规则有序,便于数据库插入及排序。可用性:可保证高并发下的可用性,确保任何时候都能正确的生成ID。自主性:分布式环境下不依赖中心认证即可自行生成ID。安全性:不暴露系统和业务的信息,如:订单数,用户数等。相关推荐HOT
更多>>mysql的MEMORY引擎为什么没有redis的应用广泛?
一、mysql的MEMORY引擎为什么没有redis的应用广泛从kv缓存的作用看,mysql优点不在kv缓存上,用它做kv缓存维护成本高,redis安装启动使用简单,...详情>>
2023-10-20 18:38:17什么是PWA?
一、什么是PWAPWA是渐进式 Web 应用,运用现代的 Web API 以及传统的渐进式增强策略来创建跨平台 Web 应用程序。。这些应用无处不在、功能丰富...详情>>
2023-10-20 14:02:19软件包“被标记为手动安装”是什么意思?
一、软件包“被标记为手动安装”是什么意思当你尝试安装已安装的库或开发包时,你会看到此消息。意味着该软件包是由用户手动安装的,而不是通过...详情>>
2023-10-20 11:47:20什么是Flash?
一、什么是FlashFlash是一种基于向量图形的动画技术,由Adobe公司开发。它支持多媒体、游戏、网站设计等应用,可以在各种平台和设备上实现高质...详情>>
2023-10-20 10:24:01热门推荐
一个优异的web前端,需要具备哪些条件?
沸华为自研的数据库gaussdb有哪些优势?
热数据库ER图是怎么做的?
热为什么使用MySQL?
新什么是synchronized?
既然MySQL中InnoDB使用MVCC,为什么REPEATABLE-READ不能消除幻读?
分布式系统里用户ID生成有什么好的方法和规则能满足“少数、尽量短、不能直接看出规则”这几个条件?
isKindOfClass、isMemberOfClass 作用分别是什么?
APP开发流程步骤有哪些?
mysql的MEMORY引擎为什么没有redis的应用广泛?
webpack proxy工作原理为什么能解决跨域?
python的五个特点?
staticmethod和classmethod的区别?
Android App设计开发应遵循哪些原则?