千锋教育-做有情怀、有良心、有品质的职业教育机构

400-811-9990
手机站
千锋教育

千锋学习站 | 随时随地免费学

千锋教育

扫一扫进入千锋手机站

领取全套视频
千锋教育

关注千锋学习站小程序
随时随地免费学习课程

上海
  • 北京
  • 郑州
  • 武汉
  • 成都
  • 西安
  • 沈阳
  • 广州
  • 南京
  • 深圳
  • 大连
  • 青岛
  • 杭州
  • 重庆
当前位置:郑州千锋IT培训  >  技术干货  >  什么是机器学习?

什么是机器学习?

来源:千锋教育
发布人:xqq
时间: 2023-10-18 10:58:29

一、什么是机器学习

机器学习 (ML) 是人工智能 (AI) 的一个分支,旨在构建能够根据所使用的数据进行学习或改进性能的系统。人工智能是一个宽泛的术语,指的是模仿人类智能的系统或机器。机器学习和人工智能这两个术语经常被相提并论,有时甚至互换使用,但它们的含义并不相同。其中一个重大区别是,所有的机器学习都是 AI,但不是所有的 AI 都是机器学习。

如今,机器学习无处不在。当我们与银行交互、在线购物或使用社交媒体时,机器学习算法会发挥作用,让我们获得高效、顺畅和安全的体验。目前,机器学习及其相关技术正迅速发展,对于它的强大功能,我们只是略知一二而已。

二、机器学习的类型

算法是驱动机器学习的引擎。一般来说,机器学习算法主要分两种:监督学习和无监督学习。这两者的区别在于如何学习数据从而做出预测。

1、监督机器学习

监督机器学习算法最为常用。在该模型下,数据科学家扮演向导,告诉算法它应该得出什么结论。就像孩子通过在图画书中记住水果来学习识别水果一样,在监督学习中,算法是由已经标记并具有预定义输出的数据集进行训练的。

监督机器学习的例子包括算法,如线性和逻辑回归,多类别分类和支持向量机。

2、无监督机器学习

无监督机器学习相对而言更加独立,在该模式下,计算机会在无人类持续提供密切指导的前提下学习识别复杂的过程和模式。无监督机器学习包括根据没有标签的数据或特定的、定义好输出的数据进行训练。

就如上文使用幼儿教学作类比,无监督机器学习类似于孩子通过观察颜色和图案来识别水果,而不是在老师的帮助下记住水果的名字。孩子(算法)会自己寻找图像之间的相似性,对图像分组,为每一个小组分配一个新标签。无监督机器学习的算法有 K 均值聚类、主成分和独立分量分析以及关联规则。

三、如何选择机器学习的类型

哪种方法更符合您的需求?在现实中,选择监督还是无监督机器学习算法,取决于一些与数据结构和数据量相关的因素以及具体使用场景。目前,机器学习已在很多行业中实现了蓬勃发展,广泛应用于各种业务目标和场景,包括:

客户终身价值异常检测动态定价预测性维护图像分类推荐引擎

四、机器学习的业务目标

1、客户终身价值建模

客户终身价值建模不仅对电子商务至关重要,同时也适用于许多其他行业。在此模型中,企业使用机器学习算法来识别、洞察和留住最有价值的客户。这些价值模型将评估海量的客户数据,以识别贡献营收非常多的消费者,忠诚度较高的拥趸,或者这些特质的组合。

客户终身价值模型在预测一定时期内客户将为企业带来多少收入上尤其有效,它让企业能够将营销重点放在激励高价值客户更频繁地与品牌互动上。此外,客户终身价值模型还可以帮助企业精确投放营销支出,吸引与现有高价值客户类似的新客户。

2、基于客户细分精准定位客户

成功的营销总是在适当的时机为适当的人提供合适的产品。就在不久前,营销人员还需要依靠自己的直觉对客户进行细分,将客户分成几个小组,然后有针对性地投放营销活动。

如今,机器学习使数据科学家能够使用聚类和分类算法,根据特定的变量将客户分组到各角色中。这些角色考虑了多个维度的客户差异,例如人口统计数据、浏览行为和亲和度。精通数据的企业将这些特征与购买行为模式联系起来,就能推出高度个性化的营销活动,进而更有效地促进销售。

随着企业可用数据的增长和算法日趋复杂,个性化功能将会越来越多,让企业更贴近理想的客户群。

3、客户流失建模

与维持现有客户的满意度和忠诚度相比,吸引新客户更耗时,成本也更高。通过对客户流失建模,企业可识别哪些客户可能会停止互动以及背后的原因。

一个有效的客户流失模型可基于机器学习算法提供全面的洞察,从单个客户的流失风险评分到按重要性排序的客户流失动因。这些洞察对于算法性客户维系策略的开发至关重要。

在深入了解客户流失数据后,企业可以优化折扣优惠、电子邮件营销活动和其他精准营销活动,促成高价值客户购买和再次光顾。

如今消费者和过去相比有更多的选择,他们可以即时比较各种渠道的价格。动态定价(也称为需求定价)让企业能够适应不断变化的市场动态,根据目标客户的兴趣水平、购买时的需求以及是否参加了营销活动等因素对产品进行灵活定价。

要想获得这样的业务敏捷性,企业需要一个可靠的机器学习策略,以及大量关于不同客户在各种场景下付费意愿如何变化的数据。动态定价模型可能很复杂,但为了充分提高收入,目前航空公司和拼车服务等企业已经成功实施了动态价格优化策略。

4、发挥图像分类的强大力量

机器学习不仅适用于零售、金融服务和电子商务等场景,它在科学、医疗卫生、建筑和能源应用领域也有巨大的潜力。例如,在机器学习算法的帮助下,图像分类可将一组固定的标签分配给任意图像。它使企业能够基于 2D 设计对 3D 建筑计划进行建模,支持在社交媒体中进行照片标记以及通知医疗诊断等功能。

神经网络等深度学习方法经常被用于图像分类,因为它们可以根据潜在联系有效识别图像的相关特征。例如,它们可以识别图像中的视角、光照、缩放或杂斑量的变化然后进行补偿,提供相关度较高的高质量洞察。

以上就是关于什么是机器学习、机器学习的类型、如何选择机器学习的类型、机器学习的业务目标的全部内容了,希望对你有所帮助。

声明:本站稿件版权均属千锋教育所有,未经许可不得擅自转载。

猜你喜欢LIKE

什么是软件需求分析?

2023-10-18

软件测试与软件开发的关系是怎样的?

2023-10-18

测试方案怎么写?

2023-10-18

最新文章NEW

C#和JAVA有哪些区别?

2023-10-18

香农定理和奈奎斯特定理区别是什么?

2023-10-18

计算机存储器主要由什么组成?

2023-10-18

相关推荐HOT

更多>>

快速通道 更多>>

最新开班信息 更多>>

网友热搜 更多>>